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A location problem with stochastic demand and congestion where mobile servers respond to service calls originating from nodes
is considered. The problem is of the set-covering type: only servers within the coverage radius of the demand-generating node may
respond to a call. The service level constraint requires that at least one server must be available to respond to an arriving call, with some
prespecified probability. The objective is to minimize the total number of servers. It is shown that earlier models quite often overestimate
servers’ availability and thus may lead to infeasible solutions (i.e., solutions that fail to satisfy the service level constraint). System
stability conditions and lower bounds on system availability are developed by analyzing the underlying partially accessible queueing
system. These lead to the development of two new models for which feasibility is guaranteed. Simulation-based computational
experiments show that the proposed models achieve feasibility without significantly increasing the total number of servers.
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1. Introduction

The fundamental problem facing emergency system plan-
ners can be described as follows. Customers residing at
the nodes of a transportation network generate stochas-
tic streams of service calls. These calls are served by mobile
servers housed at a number of facilities. In emergency set-
tings, calls must be handled promptly—which means that
only a server located within a certain coverage radius of
the customer may provide service. Moreover, since servers
may be unavailable due to congestion, it is important to
ensure that an incoming call finds a free server with a suffi-
ciently high probability. Given the high cost of maintaining
each additional server (a single police car staffed around
the clock costs over one million dollar per year—see, e.g.,
Larson (1975), inflation adjusted), a service system plan-
ner must balance the service levels achieved with the cost
incurred. This paper deals with two of the most critical
strategic decisions for such systems: location of facilities
and allocation of server capacity.

This problem belongs to the general class of Loca-
tion Problems with Stochastic Demands and Congestion
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(LPSDC) reviewed in Berman and Krass (2002). One of
the most important applications for mobile-server LPSDC
models is the location of emergency service facilities such as
ambulance, police and fire stations. The ability to quickly
respond to a service call is particularly important in such
problems. Potential applications also exist in other areas,
including the location of service centers, sales offices, and
cars by car sharing services (e.g., Zipcar.com).

Most mobile-server LPSDC problems combine aspects
of classical location problems with the dynamics of spatially
distributed queueing systems (Larson and Odoni, 1981) and
are analytically intractable. Thus, a number of simplifying
assumptions are usually made to obtain tractable models.
Standard assumptions are that call arrival processes are
Poisson and call service times are exponentially distributed.
Even under these conditions, no analytical expressions exist
for expected system performance measures such as server
availability at a given customer node (“node availability”).
This has led to the development of several models that em-
ploy various estimates of node availability in order to en-
force the service level constraints. Our paper includes an
examination of several best-known models in this area. We
show that the availability estimates used in these models
may result in systems that significantly underachieve the
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desired availability levels—i.e., these models fail to obtain
feasible solutions. Through a series of computational ex-
periments we demonstrate that this phenomenon is not
uncommon—the vast majority of instances we generated
had at least one demand-generating node where the desired
availability was not met.

The LPSDC models we consider belong to the class
of location set-covering problems, where the objective is
to minimize the total number of servers required to pro-
vide adequate service (see Berman and Krass (2002) for an
overview of the other main direction in LPSDC research—
the median-type problems where the objective is to mini-
mize the total response time).

The stochastic elements in set-covering models were in-
troduced by Daskin (1983). Daskin makes the following
three simplifying assumptions.

1. Servers operate independently of one another—thus the
busy fraction of a server (the probability of finding a
particular server busy at any time) is independent of that
of other servers.

2. The busy fraction is identical for all servers.
3. The busy fraction is irrespective of allocation decisions.

The servers’ busy fraction, p, is treated as an external
parameter. Indeed, the congestion aspect of the underlying
system is not explicitly captured in Daskin’s model, how-
ever, this model has led to several models that integrate
congestion and seek to relax some of the basic assumptions
made listed above.

Batta et al. (1989) attempt to relax the assumption that
the busy fraction of different servers are independent. Fol-
lowing Larson (1975), they introduce an adjustment factor
to account for interdependence between servers. However,
they still treat p as an external parameter. The first model
to make the busy fraction p an endogenous parameter was
developed by ReVelle and Hogan (1989a, 1989b), who use
region-based estimates of p, but still retain Daskin’s as-
sumption that servers within each region are independent.
The next significant step in set-covering LPSDC model
development was taken by Marianov and ReVelle (1994,
1996) who represent each region as a multi-server Marko-
vian queue and use queueing-based formulas to estimate
node availability. While they use an M/M/k/k loss sys-
tem representation, assuming that any call that cannot find
a free server is routed to a back-up system, their approach
easily extends to M/M/k systems (where incoming calls are
queued) or other standard queueing models. Their model
inherits ReVelle and Hogan’s assumption that the proba-
bility of a server being busy is region-specific and is iden-
tical for all servers in each region. As discussed in Section
3 below, neither the Revelle–Hogan nor Marianov–Revelle
models guarantee the availability requirements in the un-
derlying system.

Ball and Lin (1993) developed the first model that ensures
system feasibility, but under fairly stringent assumptions.
In particular, they assume that service times are determin-
istic and equal to T > 0 and derive facility-specific lower

bounds for server availability. Their approach also extends
to the case where service times are stochastic and bounded
above by T , however, in this case the availability estimate
becomes loose, which may lead to solutions that require an
unrealistic number of servers. The approach does not easily
extend to the case where service times are stochastic and
unbounded (e.g., exponential). Further discussion of this
model is provided in Section 3.

Borras and Pastor (2002) provide the ex-post evaluation
of the availability level of several known models (including
the ones listed above) by simulation, observing that desired
availability is often not met. We note that their simulation
operates as a loss system—i.e., any incoming call that can-
not find a free server is dropped; in our simulation experi-
ments, all calls are queued. They also suggest a new model
formulated similar to the Ball–Lin model, but incorporat-
ing the estimate for the busy fraction of the ReVelle–Hogan
model. While their model behaves well in computational ex-
periments, it still does not guarantee a feasible solution. As
mentioned earlier, our approach focuses on deriving prov-
ably feasible models via the analysis of the underlying queu-
ing network.

The key contribution of this paper is the development
of lower bounds for the node availability of the underlying
systems. These bounds allow us to develop location models
that guarantee feasibility with an increase of at most 20–
30% in the total number of servers in comparison to the
ReVelle–Hogan and Marianov–Revelle models, which as
shown in Section 6 are often infeasible.

The plan for the remainder of the paper is as follows.
In the next section we formulate the LPSDC model con-
sidered in the paper. Section 3 reviews three main models
from the literature and demonstrates that their solutions
may be infeasible. In Section 4 we analyze the underlying
queuing network, representing it as a partially-accessible
queueing system and deriving easily-verifiable stability con-
ditions and lower bounds on system availability. In Section 5
these bounds are used to derive two new location mod-
els. In Section 6 we briefly discuss the issues involved in
extending the two models to more general queueing sys-
tems. Section 7 presents the results of a series of com-
putational experiments that use simulation to evaluate
the performance of the existing and new models. Section
8 contains concluding remarks and directions for future
research.

2. The set-covering LPSDC and mobile servers

2.1. Basic definitions

We consider an undirected network G = (N, L), where N is
the node set and L is the link set. For i, j ∈ N, d(i, j) denotes
the shortest distance between i and j on G. The set-covering-
type LPSDC is defined by the following elements: demand
points (nodes), facilities, servers, buffers and service disci-
pline. Each of these elements are discussed below.



Feasibility in location problems with congestion 469

2.1.1. Demand points
We assume that customers are located at the nodes of the
network, the demand process for each node i ∈ N is an
independent Poisson process with rate λi and a call at node
i can be served only by servers within a prespecified distance
δ > 0 from node i; δ is the coverage radius of the system.

The node subset Ni = {j ∈ N|d(i, j) ≤ δ} is called region
Ni. It represents the set of nodes that can be covered by a
service facility at i. We also refer to node i as the center of
region Ni and all the other nodes in Ni as the peripheral
nodes of Ni.

For a subset V ⊂ N, we denote the set of nodes accessible
from V to be

⋃
j∈V Nj (this is the set of potential facility

locations that may serve at least one call from V ). Region Ni
is said to be “isolated” if

⋃
j∈Ni

Nj = Ni and “overlapping”
otherwise. Calls from an isolated region have to be served
within the region, while those from an overlapping region
may be served from outside the region.

For a subset V ⊂ N of nodes, we denote the total rate at
which demand calls originate from V by λ(V ) = ∑

n∈V λn.
We illustrate the definitions above with the following
example, which will be used throughout the paper:

Example 1. (A three-node path example.)

Consider a three-node path: N = {1, 2, 3}, d(1, 2) = 1.9 and
d(2, 3) = 2. Suppose that λ1 = 2, λ2 = 1, λ3 = 2 and δ = 2.
The network is illustrated in Fig. 1.

There are three regions: N1 = {1, 2}, N2 = {1, 2, 3} and
N3 = {2, 3}. Observe that node 2 is the center of N2 and
the two peripheral nodes (1 and 3) in N2 are not within the
coverage radius from each other. Note that regions N1 and
N3 are overlapping and that region N2 is isolated.

The demand rates for the three regions are λ(N1) = λ1 +
λ2 = 3, λ(N2) = λ1 + λ2 + λ3 = 5 and λ(N3) = λ2 + λ3 = 3.

2.1.2. Facilities
We assume that the set of potential facility locations (or
sites) consists of the node set N. We note that this assump-
tion can be made without loss of generality. This is so be-
cause N can be extended to be the finite dominating set (see
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Fig. 1. Three regions of the three-node path in example 1.

Berman et al. (1985) for details). We also note that all the
results in the paper continue to hold if the set of potential
locations consists of some subset of N (i.e., if some nodes
cannot be used as facility locations).

The number of servers x(j) ≥ 0 to be placed at site j ∈ N
is a decision variable. We denote an allocation vector by
x = (x(1), . . . , x(|N|)). If a facility is located at site j, x(j) >

0, otherwise x(j) = 0. Let X = {j ∈ N|x(j) > 0} be the set
of facility nodes, |X | be the number of facility nodes and
Xi = {j : x(j) > 0, j ∈ Ni} = X ∩ Ni be the set of facility
nodes within region Ni for i ∈ N. For a subset of nodes
V ⊂ N, let XV = ⋃

i∈V Xi be the set of facilities accessible
to the nodes in V .

Node i ∈ N is said to be “covered” if and only if there
is at least one facility within the coverage radius of i,
i.e., Xi 	= ∅. We require that a feasible allocation vector
cover all nodes on the network, i.e., |Xi| > 0 for each i ∈ N
(this requirement can be modified to include only nodes
with positive demand without affecting any results in the
paper).

2.1.3. Servers, buffers and service discipline
If located, a facility at j ∈ N houses x(j) > 0 identical mobile
servers that provide service to nodes in region Nj. One server
is required to serve each call. Once assigned to a service call,
a server is routed to the node from which the call originated,
performs on-scene service and then returns to its home fa-
cility. Thus, the total service time is the summation of the
times required for these three activities, as well as other
relevant components such as the time required to dispatch
the call, provide the necessary information and supplies to
the service unit, etc. Unless stated otherwise, we assume
that the total service time is exponentially distributed with
identical service rate μ. This assumption has been made in
the location literature in the context of emergency services
(Larson, 1975; Ball and Lin, 1993; Marianov and ReVelle,
1994; Marianov and ReVelle, 1996) even though the travel
time component is not likely to have an exponential dis-
tribution. However, approximating the distribution of the
overall service time as exponential is reasonable when the
coverage radius is not too large so that travel times are a
minor component of the overall service time. We discuss the
issues arising from relaxing this assumption for our models
in Section 6.

We assume that an infinite-capacity buffer is positioned
at each node; the service calls originating from the node
that cannot find an available server are added to the buffer.
We also assume the following dispatch policy: assign calls
from node i to a closest available server in Ni (ties are broken
randomly). If no servers in Ni are available, the call joins the
queue at node i. A facility serves calls within its coverage
radius in a First-Come First-Serve (FCFS) manner (ties
are broken arbitrarily). We refer to this service discipline as
Dynamic Discipline since the determination of which service
facility will handle a particular call depends on the state of
the system at the time when the call is dispatched. Observe
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that for each facility j our service discipline satisfies the
following work-conserving property within Nj.

Definition 1. (Bertsimas, 2007) A work-conserving service
discipline does not allow a server to be available whenever
there are customers in the system and does not cause cus-
tomers to leave before completing their service requirement.

2.2. Model formulation and node availabilities

Assuming that an allocation vector x is given and the un-
derlying queueing system specified by x is stable, we de-
fine the availability Ai(x) of node i to be the steady-state
probability that a new call from node i finds an avail-
able server in Xi (i.e., within Ni). We assume that quantity
α ∈ (0, 1), representing the minimum required availability
for all customer nodes, has been specified. In emergency
system applications, the required minimum availability is
usually quite high, with α values of 80% or higher. For ex-
ample, Advanced Life Support in the Toronto Emergency
Medical Services responds to 95.5% of the most impor-
tant calls and 70.7% of the second most important calls
(http://www.toronto.ca/ems/overview/statistics.htm, ac-
cessed September 8, 2007). Under the Dynamic Discipline,
we attempt to minimize the total number of servers on a
network while satisfying the required availability α at all
nodes. This leads to the following mathematical program-
ming formulation, which we call problem (P):

(P) : min
∑
j∈N

x(j),

subject to

Ai(x) ≥ α ∀i ∈ N,

x(j) = 0, 1, ... ∀j ∈ N. (1)

Note that constraints (1) imply that the coverage condi-
tions |Xi| > 0 hold for all i. The main difficulty in model
(P) is the estimation of availabilities Ai(x).

It is tempting to focus on each region Ni, i ∈ N and treat
it as an M/M/k queue with arrival rate λ (Ni) and num-
ber of servers k = |Xi|, because the availability formulas
are readily available for such systems. In fact, this is the
approach followed by many previous papers. Indeed, when
region i is isolated and all servers are located in the center
of the region, it behaves as an M/M/k system. However,
when Ni overlaps with some other regions, this approach
may lead to incorrect estimates of availabilities (over- or
underestimated). For example, consider an overlapping re-
gion Ni where servers are concentrated in the center node
i. Since some of the peripheral nodes have access to servers
outside of Ni, treating Ni as an isolated region will lead
to underestimates of node availabilities (because the actual
load faced by servers at i is less then λ(Ni).) On the other
hand, if the servers in Ni are located at a peripheral node
j that also belongs to other regions, then these servers will
only be able to provide service to calls from Ni part of the

time (because they are also serving calls outside of Ni), and
thus the effective service rate will be less than kμ, which
may lead to an overestimate of node availabilities for Ni.

To summarize, even when the interarrival and service
times are assumed to be Markovian and all servers are
identical, the resulting system does not behave like a set
of separable M/M/k queues. The dispatching policy used
in model (P) creates overlapping service regions, causing
different servers to face different loads that cannot be ana-
lytically calculated.

To illustrate these issues consider:

Example 2. This is a continuation of example 1.

Suppose μ = 3 and α = 0.65. Recall that λ1 = λ3 = 2 and
λ2 = 1.

Consider the allocation vector xc = (0, 3, 0) (i.e., three
servers located at node 2). This creates an M/M/3 system
since each node is accessible to each server. Using the stan-
dard availability formula for this system, (e.g., Gross and
Harris (1985)), we compute: A1(xc) = A2(xc) = A3(xc) =
0.7 > α. Hence, xc is feasible for model (P). Note, however,
that treating N1 as an isolated region consisting of nodes
1, 2 and having three servers, we would estimate the avail-
abilities as Â1(xc) = Â2(xc) = 0.91, a serious overestimate
of the actual availabilities given above.

Now consider an allocation vector xd = (1, 1, 1), i.e., one
server located at each of the three nodes. The resulting
system is much harder to analyze since calls from node
1 can only access servers at nodes 1 and 2, while calls
from node 2 can access all three servers. Similarly, servers
at node 1 and 3 have a different load than the server at
node 2. We are not aware of any close-form analytical ex-
pressions for estimating the availability of such a system.
We use Monte Carlo simulation to estimate availabilities,
yielding A1(xd) = 0.61, A2(xd) = 0.74, A3(xd) = 0.61. It
follows that this allocation vector is not feasible since avail-
abilities at nodes 1 and 3 are less than α = 0.65. Note, how-
ever, that this infeasibility would be impossible to detect if
each region was approximated as an M/M/k queue. For ex-
ample, region N1 = {1, 2}has two servers and a demand rate
of three. The corresponding M/M/2 queueing system has
an availability of 0.67 leading to the wrong conclusion that
the availability of node 1 is adequate. Note that locating two
servers at node 2, i.e., using location vector xl = (0, 2, 0),
leads to (via simulation) A1(xl) = A2(xl) = A3(xl) = 0.24 <

0.65. Thus, three servers is the minimal number that can
achieve feasibility in this example.

As discussed in the following section, the effects described
above are present in many previous models for problem (P),
leading to possibly infeasible solutions.

3. Representative models in the literature

Because analytical expressions for node availability Ai(x) in
problem (P) are not available, it is necessary to use an ap-
proximation Âi(x) in place of Ai(x) for i ∈ N in constraints
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(1). We say that such an approximation is valid if for any al-
location vector x satisfying the coverage constraint |Xi| > 0
for all i ∈ N, we have Âi(x) ≤ Ai(x). In the current section
we briefly discuss several well-known models for problem
(P) and show that the approximations of node availability
used in these models are often not valid, possibly leading
to infeasible solutions.

We denote the availability of an M/M/k queueing system
with demand rate d and service rate μ by A(d, k). We note
that A(d, k) is decreasing in d and increasing in k. Further-
more, we denote the minimum number of servers to achieve
the required availability α in this system by m(d) = min{k ≥
1 | A(d, k) ≥ α} that is a non-decreasing step function of d.
Thus, A(d, m(d)) ≥ α.

3.1. The ReVelle–Hogan model

ReVelle and Hogan (1989a, 1989b) approximate Ai(x) as-
suming that: (i) all demand calls from Ni are served by
servers in Ni; (ii) servers in Ni only serve demand from Ni;
and (iii) availability of each server is independent of that of
other servers. We note that an alternative interpretation of
assumptions (i) and (ii) is that the number of demand calls
originating outside of Ni that are served by servers in Ni is
roughly the same as the number of demand calls originat-
ing from Ni that are served by servers outside of Ni. We will
refer to this model as (RH).

From the assumptions above it follows that for i ∈ N,
the fraction of time that each server in Ni is busy is ρi =
λ(Ni)/(|Xi|μ) and (using the server independence assump-
tion) the estimate availability of node i is

α ≤ Ai(x) ≈ Âi(x) = 1 − ρ
ki
i = 1 −

(
λ(Ni)
kiμ

)ki

.

While this constraint is non-linear, since Âi(x) is increasing
in |Xi|, it can be converted to the linear constraints:∑

j∈Ni

x(j) ≥ mi ∀i ∈ N,

where mi is the smallest ki ≥ 0 satisfying 1 − [λ(Ni)/
(kiμ)]ki ≥ α. Thus, replacing constraints (1) in model (P)
with the constraints above, we get a linear integer program.
The solution of this model may lead to infeasible solutions,
as illustrated in the following example.

Example 3. Consider the same system as in example 2
above.

It can be verified that m1 = m3 = 2 and m2 = 3. An op-
timal solution for the linear integer program formulation
of model (RH) for this example is xr = (1, 1, 1), which was
shown to be infeasible in the previous example. We note that
this is not the only optimal solution to the integer program
above—the other alternative optima include x = (0, 3, 0),
which is feasible, and x = (1, 2, 0) or (0, 2, 1) not feasible—
simulation results show that the availability for the node

that does not contain a facility is only 0.5475. We conclude
that an optimal solution for model (RH) may be infeasible
for model (P).

3.2. The Marianov–ReVelle model

Marianov and ReVelle (1994) extended the ReVelle–Hogan
model by introducing a more explicit, queueing-based rep-
resentation of region-specific availability estimates. They
use assumptions (i) and (ii) of the (RH) model, but replace
the binomial-based estimate with a queuing-based one. We
will refer to this model as (MR).

Marianov and ReVelle estimate availability based on
the M/M/k/k loss system, i.e., they allow no buffers in
their model assuming that any calls that cannot be han-
dled immediately are lost (or transferred to backup service
providers). However, in the current model queues are al-
lowed; thus we use the analytical formula for M/M/k sys-
tems instead. We thus estimate Âi(x) = A(λ(Ni), m(λ(Ni))).
We note that the infeasibility effects demonstrated be-
low do not disappear even if the original assumptions are
retained—see Borras and Pastor (2002).

The constraints in model (MR) are Ai(x) ≈ Âi(x) =
A(λ(Ni), m(λ(Ni))) ≥ α. As before these constraints are lin-
earized into ∑

j∈Ni

x(j) ≥ m(λ(Ni)) ∀i ∈ N, (2)

These constraints are used in place of constraints (1) in
integer program (P).

For example 2, the value of m(λ(Ni)) = mi, as defined
for model (RH) in example 3 above. Thus, the model (MR)
for this particular example is identical to model (RH). As
discussed above, in both models (RH) and (MR) there is an
optimal solution that is feasible, and three other alternative
optima that are not feasible. Neither model contains guid-
ance of how the feasible solution should be chosen over the
infeasible ones. Moreover, it is not hard to construct larger
examples where all optimal solutions are infeasible for both
models.

3.3. The Ball–Lin model

Ball and Lin (1993) took a reliability-based approach to
estimate the node availability, and we will refer to their
model as (BL). They start by estimating the availability
of a facility. Suppose a facility at j ∈ N has x(j) servers.
The maximum demand rate this facility faces is λ(Nj)—
this assumes that all calls from region Nj must be han-
dled by this facility. Model (BL) assumes that the ser-
vice times are constant and equal to T , while the ar-
rivals are Markovian. Let D(j) be the Poisson random
variable representing the total number of calls generated
from region Nj during time period T . Then the probabil-
ity that facility j has no available servers during time pe-
riod (t, t + T) is given by P[D(j) ≥ x(j)]. Note that for an
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overlapping region this is an overestimate, because some
of the calls from Nj may be handled by servers from other
facilities.

Now consider the availability of a demand-generating
node i ∈ N. A call from i during time (t, t + T) will find no
available servers if none of the facilities in Xi have available
servers, implying

Âi(x) = 1 −
∏
j∈Xi

P[D(j) ≥ x(j)].

Ball and Lin prove that Âi(x) ≤ Ai(x). Clearly, this remains
valid when the service times are random variables bounded
above by T .

The constraints Âi(x) ≥ α, can be linearized through in-
troducing the binary variables x(j)k = 1, if k servers are
placed at facility j; 0 otherwise. After taking logarithms, we
get:

∑
j∈Ni

Kj∑
k=1

− log {Pr[D(j) ≥ k]} x(j)k ≥ − log(1 − α) ∀i ∈ N.

(3)

The remainder of the formulation is similar to problem
(P) with the variable substitution x(j) = ∑Kj

k=1 kx(j)k, where
Kj is the maximum number of servers that can be located
at node j.

Compared with the models discussed above, this formu-
lation involves a much larger number of decision variables
and a highly dense constraint matrix, making solvability an
issue (Ball and Lin partially address this by developing some
families of valid inequalities for the formulation above).

However, a more fundamental issue is the choice of pa-
rameter T . As noted earlier, the service times in emergency
systems usually exhibit a high level of variability. Even if an
upper bound on the range of possible values exists, using its
value for parameter T might result in an unrealistic num-
ber of servers in the optimal solution. For example, con-
sider a police station where service times range from 1 to
60 minutes. Setting T = 60 minutes in the model requires
the station to have enough units to be able to dispatch a
new unit to every call that is expected to arrive during an
hour. This is likely to be an order of magnitude more than
the number of units stationed at any police station we are
aware of (Metropolitan Toronto Police Simulation Project,
1997, background data). Thus, T has to be set to some per-
centile, rather than the upper bound, of the service time
distribution. Not only is the choice of the percentile not
clear, but the guarantee that the resulting solution is fea-
sible is lost in the process. This issue is illustrated in the
following example.

Continuing with the network from example 2, we tested
the integer program for model (BL) with different values of
T (we used Kj = 10 for all j). Since service times are assumed
to be exponential in example 1, we tested two values for
T : the 50th percentile, leading to T = 0.231, and the 75th

percentile, with T = 0.462. As before, we use simulation to
estimate actual node availabilities.

With T = 0.231 the optimal solution is x1 = (0, 2, 0); as
discussed in example 2 above this yields node availabilities
of 0.24—far below the required α = 0.65. The choice of
T = 0.462 leads to x2 = (0, 4, 0) with the estimated node
availability of 0.9. While this solution is feasible, it locates
too many servers—the allocation vector (0, 3, 0) is sufficient
to achieve feasibility. In our experience, this is a typical
outcome for model (BL): an “aggressive” choice of T leads
to infeasibility, while the “conservative” choice leads to an
overly large number of servers.

4. Queueing analysis of the LPSDC

This section develops our main results, including stability
conditions and bounds for availability for a partially ac-
cessible queueing system. It is important to emphasize that
even though this paper deals mainly with Markovian inter-
arrival and service times, the results in this section apply to
significantly more general settings. For example, our main
results in Section 4.3 are valid for any continuous service
time distribution with finite variance.

4.1. Multi-class multi-server queueing systems and their
stability

After a location–allocation decision is made, the resulting
system specified on a network can be viewed as a Multi-
Class Multi–Server Queueing (MCMSQ) system with re-
stricted customer–server matching (Caldentey and Kaplan,
2007). For example, in Fig. 2 we consider two matchings
between customer classes 1, 2, 3 and servers s, t , u. The
resulting MCMSQ systems can be represented as a bipar-
tite graph with node set B = {N, X}, where N is the set of
customer classes and X is the set of servers. An incomplete
bipartite graph, such as the one depicted in Fig. 2(a), in-
dicates that some servers are not accessible to some of the
customer classes; we call such a system a Partially Accessi-
ble Queueing (PAQ) system. A completely connected graph
is a special case where each server is accessible to all cus-
tomer classes as in Fig. 2(b); we call this a Fully Accessible
Queueing (FAQ) system.

A vast literature is available on MCMSQ systems (also
known as systems with lane selection), see e.g., Schwartz
(1974). Dynamic disciplines in an MCMSQ system have
received much attention in the literature. Dai (1995) pro-
vides a unified approach to the stability conditions for open
queueing networks. Positioning an infinite-capacity buffer
at each server, Foley and McDonald (2001) derive a stabil-
ity condition for the MCMSQ system and some asymptotic
performance measures for the “join the shortest queue”
system with two servers. Caldentey and Kaplan (2007) pro-
vide a stability condition for the queueing system with an
infinite-capacity buffer at each node by showing that its
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Fig. 2. (a) A partially accessible queueing system; and (b) a fully accessible queueing system.

corresponding fluid limit version is stable. Similarly to the
current paper, they assume that class-i customers arrive ac-
cording to a homogeneous Poisson process with rate λi,
server k service in an exponential time with rate μk, and a
newly available server serves customers at different queues
in an FCFS manner. Let S be the set of servers and define
the set of servers accessible from the subset V ⊂ N of cus-
tomer classes to be S(V ). Then, the following necessary and
sufficient condition for stability holds.

Proposition 1. (Caldentey and Kaplan, 2007) Assume
Markovian arrivals and service and that infinite-capacity
buffers are available for each customer class. Then, the re-
sulting MCMSQ system is stable, if and only if∑

i∈V

λi <
∑

s∈S(V )

μs ∀ V ⊂ N. (4)

In fact, this stability condition holds under any work-
conserving service discipline (Caldentey and Kaplan, 2007).
If an MCMSQ system is stable, by the PASTA (Poisson Ar-
rivals Sees Time Averages) property (Wolff, 1989), typical
queueing performance measures for each node customer
class exist.

4.2. PAQ systems in LPSDC

The concepts described above are directly applicable to the
model we consider. Each node can be viewed as a customer
class. An allocation vector x with facility location set X
creates an MCMSQ system which can be represented by a

bipartite graph Gb with node set B(x) = {N, X} where node
i ∈ N is connected to facility f ∈ X iff f ∈ Xi.

For example, the two allocation vectors xd = (1, 1, 1) and
xc = (0, 3, 0) in our example 2 above create two different
systems depicted on Fig. 3: the vector xd creates a PAQ
system on Fig. 3(a), while the centered allocation vector xc

creates a FAQ system on Fig. 3(b). We note that the graph
Gb need not be connected. For example, if the coverage
radius was set to 0.5 in example 2, the vector xd above
would lead to the graph on Fig. 3(c), which consists of three
separate M/M/1 FAQ systems.

In general, each allocation vector on a network creates
one or more PAQ systems (the multiple-system case occurs
when the graph Gb is disconnected). Certain allocation vec-
tors may also lead to FAQ systems, whose performance
measures are available from the results for the M/M/k
queues. Because we assume that μk = μ ∀k, the stability
condition (4) simplifies to

λ(V ) =
∑
i∈V

λi < μ
∑
j∈XV

x(j) ∀ V ⊂ N (5)

(recall that XV is the set of facility nodes accessible to nodes
in V ). This condition can be considered an extension of the
stability condition for the M/M/k system in the sense that
the average load of a server accessible to any subset of call
classes is less than one. Since the condition above needs
to be checked for 2|N| possible subsets, it is not easy to
verify when N is large. In contrast, the following sufficient
condition for the stability of the PAQ system induced by an
allocation vector x is easily verifiable.
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Fig. 3. (a) A PAQ system created by xd = (1, 1, 1); (b) a FAQ system created by xc = (0, 3, 0); and (c) a system created by xd = (1, 1, 1)
with reduced coverage radius consisting of three FAQ systems.
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Proposition 2. Any allocation vector x such that:

|Xi| ≥ 1 ∀ i ∈ N,

x(j) > λ(Nj)/μ ∀ j ∈ X,

results in a stable PAQ system.

Proof. For an arbitrary subset V ⊂ N let Vj = V ∩ Nj for
each j ∈ X . Since for each i ∈ N, |Xi| > 0, it follows that i ∈
Nj for some j ∈ X . Thus,

⋃
j∈X Nj = N, and therefore V ⊆⋃

j∈X Vj. Moreover, if j 	∈ XV , then clearly Vj = ∅. Thus

V ⊆
⋃

j∈XV

Vj.

Note, however, that sets Vj, j ∈ X may not be disjoint.
Thus, λ(V ) ≤ ∑

j∈XV
λ(Vj). Moreover, for each j ∈ X , we

have λ(Vj) ≤ λ(Nj) < μx(j), where the last inequality holds
by hypothesis. It follows that:

λ(V ) ≤
∑
j∈XV

λ(Vj) <
∑
j∈XV

μx(j),

which completes the proof. �

Observe that Proposition 2 holds for any service disci-
pline under which the average load faced by facility j is at
most λ(Nj) for each j ∈ X . Note that the average load is
exactly λ(Nj) only when each node in Nj is assigned only to
facility j and to no other facilities on the network.

We also note that condition of Proposition 2 is sufficient
but not necessary. For example, the two allocation vectors
xc = (0, 3, 0) and xd = (1, 1, 1) in example 2 above both
satisfy condition (5) and thus lead to stable systems, but
only xc satisfies the condition of Proposition 2.

4.3. Stochastic orders for waiting times in general PAQ
systems

We are interested in lower bounds for availabilities that can
be translated into tractable forms of constraints in mathe-
matical programming models similar to the ones discussed
in Section 3. Moreover, we want these bounds to be suffi-
ciently tight so that the optimal solution of the model does
not place an excessive number of servers. To that end, we
construct a modified system whose waiting times of nodes
are valid (i.e., lower bound) approximations for those in the
underlying system. We note that the results of this section
do not require the Markovian assumption.

Consider an allocation xU that induces a PAQ system U .
Assume that U satisfies the following conditions.

1. Interarrival times at node i follow a renewal process with
rate λi.

2. Demand processes at different nodes are independent.
3. Continuous service times of a server are drawn from

some general distribution with mean 1/μ and finite vari-
ance.

4. The allocation satisfies the condition in Proposition 2.

We now construct a modified system M by decoupling
the underlying system U based on facilities into |X | FAQ
systems.

As before, we represent U by a bipartite graph Gb with
node set (N, X). Consider some node i ∈ N. For every facil-
ity j ∈ Xi there is a link (i, j) in Gb. We construct the modified
system M as follows. First define a new node set N ′ by copy-
ing each node i ∈ N into |Xi| nodes ij, j ∈ Xi, each with the
same arrival process as node i. The node set for the bipar-
tite graph representing M is (N ′, X)—i.e., the facility set is
the same as in U . Create a link (ij, j) for each ij ∈ N ′ and
j ∈ X such that i ∈ Nj in U (that is, node i belongs to the
coverage area of the facility j). Since node ij in M is copied
from node i in U , the interarrival times for each node ij in
Nm

j = {ij, i ∈ Nj} are drawn from some general distribution
with mean 1/λi. Since U and M have identical server sets,
the service distribution in M is identical to U—with mean
1/μ. As in U , the service discipline in M is work-conserving.
An available server in M serves calls from different queues
at accessible demand nodes in an FCFS manner. Ties are
broken randomly.

Note that for each j ∈ X , the region Nj in U is mapped
into region Nm

j in M, moreover for k, j ∈ X with k 	= j,
the sets Nm

j and Nm
k are disjoint. Thus, each facility node

j together with the set Nm
j in M forms an G/G/x(j) FAQ

system. Note also that λ(Nm
j ) = λ(Nj) < μx(j) where the

last inequality follows since the allocation xU is assumed to
satisfy Proposition 2. This shows that the same condition
holds for system M. Thus, M consists of |X | stable separate
G/G/k FAQ systems. Moreover, when interarrival and ser-
vice times are Markovian for all j ∈ X the G/G/x(j) system
reduces to an M/M/x(j) system with demand rate λ(Nm

j )
and service rate μ.

The construction of the modified system M is illustrated
in Fig. 4 for system U induced by allocation xU = (2, 0, 1)
in example 2. The original PAQ system has been decoupled
into separate M/M/1 and M/M/2 queues. Note that the
overall arrival rate in M is λ1 + 2λ2 + λ3 that is higher than
in the original system.

Intuitively, facilities in M are more “loaded” than in
U . Moreover, since M consists of separate FAQ sys-
tems, the node availability in M can be obtained from

23

11

33

3 (1)

1 (2)21

11

Fig. 4. The modified system M corresponding to the PAQ system
created by xd = (2, 0, 1).
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standard queueing formulas (particularly for M/M/k sys-
tems). These availabilities will be lower bounds for the cor-
responding node availabilities in U . To substantiate this in-
tuition we establish a stochastic order relationship between
the waiting times in systems U and M. We use the following
definition (Shaked and Shanthikumar, 1994):

Definition 2. Let Y and Z be two random variables such
that Pr{Y > u} ≤ Pr{Z > u} for all real u. Then Y is said
to be smaller than Z in the usual stochastic order (denoted
by Y ≤st Z).

Without loss of generality, we assume that the service
time of calls is known at their arrivals. Thus, for any as-
signment rule of calls to facilities, the actual assignment is
known at the time of arrivals. With this assumption, the
waiting time for calls is known at their arrival and thus, the
virtual waiting times at each facility are also known. We
let Wj (t) and W∞

j be the virtual waiting time at time t and
the steady-state waiting time for facility j in U , respectively.
Let W m

j (t) and W m,∞
j denote these quantities in M. Thus,

Wj (t) is the waiting time of a node-i call arriving at time t
and assigned to facility j. If the call is assigned to facility f
	= j, the waiting time of this call is Wf (t).

Suppose node i is covered by facility j in U . While node-
ij calls (i.e., all calls from Nm

j ) are assigned to facility j
in M, a node-i call might not be assigned to facility j in U
(when this node is covered by more than one facility). Thus,
facility j in M faces heavier demand than facility j in U and
we expect its waiting time to be longer and its availability to
be lower. Theorem 1 and Corollary 1 below establish that
this is indeed the case.

Theorem 1. Assume that calls are assigned to servers accord-
ing to the Dynamic Discipline. Let the underlying system U
and its modified system M be empty at t = 0. Then

Wj (t) ≤st W m
j (t) ∀j ∈ X, ∀t ≥ 0. (6)

Moreover, if W m,∞
j is well defined, so is W∞

j and

W∞
j ≤st W m,∞

j ∀j ∈ X. (7)

Proof. Denoting the arrival time distributions of U and
M by FA (a) and GAm (am), respectively, we observe that
Am ≤st A. Thus, Equations (6) and (7) follow from the
discussion of the Kiefer–Wolfowitz recursion in Section
11.6 of Wolff (1989), despite the fact that this recur-
sion is not a Markov Chain in the underlying system.
Specifically, Equation (99) on page 495 of Wolff (1989)
holds and it also holds as a sample-path result. Also,
Equation (99) together with the remarks following it im-
plies our Equation (6). Then, Equation (97) together
with its discussion on page 494 of Wolff (1989) implies
our Equation (7). �

Observe that W∞
j = 0 is equivalent to the event that at

least one server in facility j is available. We use P(W∞
j = 0)

and P(W m,∞
j = 0) to bound the steady-state availability,

Ai(x).

Corollary 1. For any node i ∈ N, the steady-state availability
Ai(x) in U is bounded as follows:

Ai(x) ≥ max
j∈Xi

P
(
W∞

j = 0
) ≥ max

j∈Xi

P
(
W m,∞

j = 0
) ∀i ∈ N.

(8)

Moreover, when node-i calls follow a Poisson process we
have:

Ai(x) ≥ 1 −
∏
j∈Xi

(
1 − P

(
W m,∞

j = 0
)) ∀i ∈ N. (9)

Proof. Equation (8) is straightforward from Theorem 1.
Because Poisson random variables have the discrete “new
better than used” property (e.g., Proposition 3 and Theorem
1 in Ball and Lin (1993)), Equation (9) follows from Ball
and Shanthikumar (1994). �

When the arrival and service times are Markovian, each
facility j in M operates as an M/M/x(j) queue, and ana-
lytical expressions for availability of an M/M/x(j) system
can replace P

(
W m,∞

j = 0
)

in (8) and (9) above.
We also note that Theorem 1 can be used to derive lower

bounds on other performance measures related to the wait-
ing times in the original system U , including limits on the
average wait in queue, maximal wait in queue, etc. The re-
sults will be similar to the expressions in Corollary 1 above.

5. New stochastic location models

In this section we develop two new location models for
the LPSDC problem (P) formulated in Section 2 above.
The models are motivated by the results in the previous
section and are guaranteed to achieve the required node
availability.

5.1. Model (BBKK1)

This model is motivated by the bound (8) above. Recall
that for an M/M/k queue with arrival rate λ and specified
availability level α ∈ (0, 1), the quantity m(λ) is defined as
the minimum number of servers needed to achieve the re-
quired level of availability. Note also that for each i ∈ N,
the value of m(λ(Ni)) can be computed during the pre-
processing stage, and that an allocation placing more than
the minimal required number of servers at a facility cannot
be optimal. This leads to the following integer program:

(BBKK1) min
∑
j∈N

m(λ(Nj))yj,

subject to
∑
j∈Ni

yj ≥ 1 ∀i ∈ N, yj = 0, 1 ∀j ∈ N.

The binary decision variable yj indicates whether a facil-
ity is located at site j (when yj = 1) or not. The constraint
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specifies that each node i ∈ N must belong to at least one re-
gion Nj centered at one of the open facilities. The objective
function specifies that if a facility is open at j ∈ N, it must
house exactly m(λ(Nj)) servers. The following corollary of
Theorem 1 now follows.

Corollary 2. Let y be an optimal solution to model (BBKK1),
and define the allocation vector x1 as follows:

x1(j) =
{

0 if yj = 0,

m(λ(Nj)) if yj = 1,

for j ∈ N. Then Ai(x1) ≥ α for all i ∈ N.

Proof. First note that by the feasibility of y in model
(BBKK1) and the definition of x, the resulting system satis-
fies the stability condition in Proposition 2. The result now
follows from Equation (8) in Corollary 1. �

Note that the integer program (BBKK1) is a special
case of the classic Set-Covering Location Problem (SCLP),
and thus is relatively easy to solve even for large-scale in-
stances. Observe also that the model can be easily extended
to other queueing performance measures (such as mean
waiting time, mean queue length, etc.) simply by redefining
m(λ(Nj)). An additional advantage of (BBKK1) is that it
tends to centralize servers at the open facilities, thus limit-
ing their number. The obvious disadvantage of (BBKK1)
is that by ignoring the fact that a node in Nj may get ser-
vice from a facility other than j it may overestimate the
required number of servers. Nevertheless, as the follow-
ing example shows, the estimated number of servers can
be tight (i.e., smaller number of servers cannot maintain
feasibility).

Example 4. (BBKK1) for the three-node path of
example 2.

As noted in the discussion of model (MR) earlier, the
m values for this example are: m(λ(N1)) = 2, m(λ(N2)) =
3, m(λ(N3)) = 2. The unique optimal solution of model
(BBKK1) for example 1 is y = (y1 = 0, y2 = 1, y3 = 0) and
the corresponding allocation vector xc = (0, 3, 0) is feasible
and, as discussed in example 2, is also tight.

5.2. Model (BBKK2)

This model is similar in structure to model (BL), but with-
out the assumption that the service times are constant. It is
motivated by bound (9) above that we rewrite as∏

j∈Xi

[1 − A(λ(Nj), x(j))] ≤ 1 − α. (10)

As long as Equation (10) is satisfied, the required level of
availability is ensured in M, and thus in U as well. Taking

the logarithm of Equation (10) leads to

∑
j∈Ni

Kj∑
k=1

− log(1 − A(λ(Nj), k))yjk ≥ − log(1 − α) ∀i ∈ N.

(11)
Replacing Equation (3) in (BL) by Equation (11) leads to
model (BBKK2). Note that as will be shown below, we can
always set Kj = m(λ(Nj)) (in applications capacity restric-
tions may force the value of Kj even lower). We note that
the ability to easily incorporate capacity restrictions on in-
dividual facilities is an attractive feature of (BBKK2); in
contrast, the solution produced by model (BBKK1) may
lose feasibility if the number of servers at a facility is forced
below m(λ(Nj)).

The following result establishes the feasibility of
(BBKK2) with respect to the original model (P) and shows
that an optimal solution to (BBKK2) will never use more
servers than an optimal solution to (BBKK1).

Corollary 3. Let y be an optimal solution to model (BBKK2),

and define the allocation vector x2 as follows:

x2(j) = k iff yjk = 1, j ∈ N.

Then

(a) Ai(x2) ≥ α for all i ∈ N;
(b) If Kj ≥ m(λ(Nj)) for all j ∈ N, then

∑
j∈N x2(j) ≤∑

j∈N x1(j), where x1 is the allocation vector derived
from an optimal solution to (BBKK1) as in Corollary 2
above.

Proof. First note that since α > 0, constraint (11) implies
that |Xi| > 0 for any feasibility solution y. Moreover, since
all the terms on the left-hand side of (11) for which k ≤
λ(Nj)/μ are equal to zero, in any optimal solution x2(j) >

λ(Nj)/μ must hold if yjk > 0. Thus, under the allocation
vector x2 the resulting system satisfies the stability condition
of Proposition 2. Part (a) now follows immediately from
Equation (9) in Corollary 1.

Part (b) follows by observing that, by Corollary 2, the
allocation vector x1 satisfies Equation (10) and thus is a
feasible solution to (BBKK2). �

We note that the integer program (BBKK2) does not
have the attractive SCLP structure of (BBKK1), and is
significantly harder to solve. Moreover, as the computa-
tional results in Section 6 show, the expected improvement
of (BBKK2) over (BBKK1) was minimal in our simulation
experiments.

Example 5. (BBKK2) for the three-node path of
example 2.

As discussed earlier, we haveλ(N1) = λ(N3) = 3,λ(N2) = 5,
α = 0.65 and μ = 3. Thus, the minimal number of servers
k for a facility located at any of the nodes is two (avail-
abilities in constraint (11) are zero for k = 1). On the other
hand, as computed earlier, m(λ(N1)) = m(λ(N3)) = 2 and
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m(λ(N2)) = 3. Thus, K1 = K3 = 2, K2 = 3 and the only
decision variables we need to consider are y12, y22, y23, y32.
The objective function is min(y12 + y22 + y23 + y32).

It can also be verified that log(1 − A(2, 2)) = log(1 −
0.667) = −0.477, log(1 − A(5, 2)) = log(1 − 0.242) =
−0.120, log(1 − A(5, 3)) = log(1 − 0.702) = −0.523, and
log(1 − α) = −0.456. Thus, constraint (11) for i = 1 is

0.477y12 + 0.12y22 + 0.523y23 ≥ 0.456,

(with standard integer programming pre-processing tech-
niques, this would be converted to y12 + y23 ≥ 1). The other
constraints in (BBKK2) are derived similarly.

The unique optimal solution to (BBKK2) is y23 = 1, with
all other decision variables set to zero. This results in an
allocation vector xc = (0, 3, 0)—the same feasible and tight
solution obtained for (BBKK1).

6. Extending the new models to more general
queueing systems

In this section we briefly discuss the issues involved in ex-
tending models (BBKK1) and (BBKK2) to more general
queueing systems. In particular, we discuss the possibility of
non-Markovian service, non-Markovian arrivals and finite-
buffer systems.

First, we observe that both models developed above can
be used as heuristics for any queueing system, as long as
the formulas for m(λ(Nj)) and A(λ(Nj), x(j)) are adjusted
appropriately for j ∈ N. We are, however, more interested
in whether the models remain provably feasible under the
modified conditions.

For all three extensions discussed above, gaps remain in
the current methodology in order for the feasibility to hold.
The most problematic appears to be the extension to a gen-
eral call arrival process. The arrivals to each facility may no
longer form a renewal process, impacting both Caldentey
and Kaplan’s (2007) stability condition (4) and our waiting
time bounds (8, 9).

The relaxation of the exponential service assumption
(as mentioned in the Introduction, this is—arguably—the
weakest assumption in the model) appears to be somewhat
less problematic. As long as the stability condition (4) can
be established, both models (BBKK1) and (BBKK2) will
produce feasible solutions since our waiting time bounds
(8, 9) do hold for M/G/N systems.

Finally, the extension to systems with finite buffer capac-
ity appears to be possible. Such systems are automatically
stable, so a stability condition is not required. However,
Theorem 1 does need to be re-established; the current proof
relies on the results in Wolff (1989), which may not hold for
finite buffer systems. A new proof, perhaps following the
arguments of the proof of similar bound in Kim (2005), is
required for this case.

7. Computational experiments

In previous sections we claimed that many of the previ-
ously available models for the LPSDC problem may lead to
infeasible solutions. We also developed two models where
feasibility is guaranteed. However, several important ques-
tions remain.

1. How prevalent is the feasibility issue, i.e., how likely are
infeasible solutions to arise in the previously available
models and what level of infeasibility can be expected?

2. How practical is the “fix” suggested by the new (BBKK1)
and (BBKK2) models—does it achieve feasibility at
the cost of placing an excessive number of servers and
facilities (much more than really needed to achieve
feasibility)?

3. How large an advantage does (BBKK2) hold over
(BBKK1)? From Corollary 3 (b) we know that an opti-
mal solution to (BBKK2) will not require more servers
than (BBKK1), but does this translate into practical
gains?

In order to answer these questions we conducted a series
of computational experiments.

For each experiment we generated a random net-
work with N = 20, 30 or 50 nodes and link lengths
l(i, j) ∼ Uniform(1, 50) . We computed the shortest
distance matrix for this network, as well as the average
shortest distance d̄. The coverage radius was set to
δ = (0.5)d̄, (0.75)d̄ and (1.0)d̄. The arrival rates λi, i ∈ N
were drawn from a Uniform (1, 10) distribution. The values
used for the service rate μ were 20, 35 and 50. Finally, the
required availability level α was set to 0.65, 0.75, 0.85 and
0.95. Altogether, 108 random instances were generated.
For each instance we obtained optimal solutions to models
(RH), (MR), (BL), (BBKK1) and (BBKK2) using the
CPLEX integer programming Solver. Since model (BL)
assumes a constant service time T , while the service is
exponential in our experiments, we set T to the 50th
and 75th percentiles of the service time distribution—the
corresponding results are referred to as (BL(50%)) and
(BL(75%)). Once the allocation vector x was determined for
each model, we estimated the actual expected availability
by running a discrete-event simulator for the network; the
number of simulation iterations is set to |N|(500 000); one
iteration is an event of either a demand arrival at a node
or a service completion by a server. For each instance we
computed three availability measures: the number of “in-
feasible” nodes—i.e., nodes with Ai(x) < α, the “minimum
deviation” defined as mini∈N(Ai(x) − α) and the “maximum
deviation” defined as maxi∈N(Ai(x) − α) representing the
minimum and maximum differences between the achieved
and required server availability at all nodes. While we only
report a summary of our experiments here, the detailed
results for |N| = 50 are available in the online Appendix.

The average and maximal proportions of nodes with in-
feasibilities for all models, the average and minimum values
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Table 1. Fraction of nodes with infeasibility, minimum and maximum deviations from α for the six models

(RH) (%) (MR) (%)
(BL)

(50%) (%)
(BL)

(75%) (%) (BBKK1) (%) (BBKK2) (%)

Ave. % infeas. 28.28 7.57 27.18 0 0 0
Max. infeas. 100.00 50.00 80.00 0 0 0
Ave. min. deviation −15.00 −7.89 −6.64 10.94 7.72 7.57
Min. min. deviation −56.86 −40.29 −36.49 2.13 0 0
Ave. max. deviation 14.31 17.50 17.76 19.69 19.56 19.55
Max. max. deviation 34.90 34.95 34.40 35.00 35.00 35.00

of the minimum deviations from α, and the average and
maximum values of the maximum deviations from α are
shown in Table 1. From this table we can see that mod-
els (RH), (MR) and (BL(50%)) can lead to infeasible so-
lutions. Moreover, infeasibility is not an infrequent phe-
nomena: on average 28.28, 7.57 and 27.18% of nodes were
infeasible for these models, respectively, with maximum
proportions of up to 100% for some instances. In fact, de-
tailed results show that the optimal solutions for these mod-
els had at least one infeasible node for 87, 75 and 77.8%
of all instances, respectively. Model (BL(75%)) and, obvi-
ously, models (BBKK1) and (BBKK2) did not result in any
infeasibilities.

The deviation results in Table 1 show that for models
(RH), (MR) and (BL(50%)) the average availability is 15,
7.89 and 6.64% below the required level, respectively—
indicating fairly significant departures from feasibility. We
note that in some instances these deviations are very
severe—ranging up to 56.86, 40.29 and 36.49%, respec-
tively. We note that the departures from feasibility for (RH)
and (MR) models in our experiments were much larger
(both in terms of frequency and minimum deviation from
α) than for the experiments reported by Borras and Pastor
(2002), likely to be because their simulation model dropped
any incoming call that could not find an available server,
thus reducing the load on the system.

It is also interesting to observe minimum deviations
for the three “feasible” models: (BL(75%)), (BBKK1)
and (BBKK2) (of course, only the latter two guarantee
feasibility). Ideally, we want the minimum deviation to
be 0%—since larger numbers may indicate that exces-
sive number of servers have been located. The average
values for these three models are 10.94, 7.72 and 7.57%,
respectively—indicating that the availability approxima-
tion used in (BL(75%)) is not as tight as in the other two
models. Positive values in all three cases indicate that it may
be possible to construct even tighter approximations (i.e.,
all three models are likely to overallocate server capacity).
Still, the bounds used for (BBKK1) and (BBKK2) are tight
for some facilities in several instances, as the minimum
min. deviation for both models is zero.

While average values of minimum deviations range from
−15 to 10.94% for all models, we find relatively small
differences in the range of maximum deviations vary-

ing from 14.31 to 19.69% and even smaller differences
in the maximum of the maximum deviations ranging
from 34.40 to 35%. Thus, by the last measure the price
paid for the conservativeness of the lower bound is not
significant.

We investigated the sensitivity of the models with respect
to the service level α and the coverage radius δ. We observed
that the average of the average deviations for all six models
is decreasing with α and for the three feasible models is also
increasing with δ. This suggests that the bounds developed
are tighter for higher service levels and smaller coverage
radii. In terms of feasibility we observed that (RH) infea-
sibility is increasing with α but there is no clear relation
between infeasibility and α for the (MR) and (BL (50%))
models. Moreover, we observed that the infeasibility of both
(RH) and (MR) is increasing with δ and there is no clear
relation between the latter and the infeasibility for the (BL
(50%)) model.

We next turn our attention to the server and facility al-
locations for the different models. The primary measures
we use here are the ratios of the number of servers (facil-
ities) to the number of nodes and the relative differences
in the number of servers (facilities) required by each model
versus the minimum number of servers (facilities) for all
models with respect to the current instance. The results are
summarized in Table 2. We note that the relative number
of servers is the primary measure of solution quality in our
models, since none of the models included fixed costs for
opening new facilities (even though such costs would be
easy to introduce). However, some models tend to “nat-
urally” centralize servers at the facilities, while others do
not—hence it is interesting to look at the relative number
of facilities as a secondary measure.

The average ratio of the number of servers to the number
of nodes of both (BBKK1) and (BBKK2) is 31.4% (=(64% –
48.7%)/48.7%), 21.2 and 25.7% higher than those of (RH),
(MR) and (BL(50%)), respectively. The three “infeasible”
models–(RH), (MR) and (BL(50%))—tend to use fewer
servers. With respect to the differences in the average num-
ber of servers, the more conservative (BL(75%)) model uses
66.3% more servers (on average) then the minimum, while
(BBKK1)/(BBKK2) solutions use 44.4% more than the
minimum, on average. This indicates that the two new mod-
els developed in the current paper hold clear advantages
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Table 2. Ratio of the number of servers (facilities) to the number of nodes for the six models

Models (RH) (%) (MR) (%) (BL (50%)) (%) BL (75%) (%) (BBKK1) (%) (BBKK2) (%)

Ave. number servers/number nodes 48.7 52.8 50.9 73.4 64.0 64.0
Max. number servers/number nodes 106.7 120.0 116.7 160.0 136.7 136.7
Ave. number facilities/number nodes 33.6 35.2 23.9 23.9 22.4 22.7
Max. number facilities/number nodes 65.0 75.0 60.0 55.0 55.0 55.0

over the (BL(75%)) model since they achieve guaranteed
feasibility with a smaller number of servers.

It is interesting to note that (BBKK1) tends to use the
fewest number of facilities among all models developed—
this is because of the natural server centralization mecha-
nism built into this model. This holds advantages in real-life
applications where one generally wants to limit the number
of facility locations.

It is important to note that models (BBKK1) and
(BBKK2) use exactly the same number of servers in all 108
instances. Recall that since any solution to (BBKK1) is al-
ways feasible for (BBKK2), it means that (BBKK2) picked
an alternate optima.

However, as the following example shows, for some in-
stances model (BBKK2) can result in fewer servers than
model (BBKK1).

Example 6. Separation of (BBKK1) and (BBKK2) solu-
tions.

Consider a four-node cycle with all link lengths set to
one and the coverage radius δ = 1. Thus, for each node
i, the region Ni consists of itself and two adjoining nodes.
Let λ1 = λ3 = 1.5, λ2 = λ4 = 0.5 (i.e., there are two heavy-
demand nodes located opposite to each other, and two light-
demand nodes). Let μ = 4 and α = 0.4.

Note that λ(N1) = λ(N3) = 2.5 and λ(N2) = λ(N4) =
3.5. Therefore, with one server at each node the availabil-
ity estimates are: A(2.5, 1) = 0.375 for nodes 1 and 3 and
A(3.5, 1) = 0.125 for nodes 2 and 4. On the other hand
the availabilities with two servers are much higher (0.851
and 0.733, respectively). It can be verified that locating
two servers at any two nodes yields an optimal solution to
(BBKK1) denoted by x1 (we omit the formulation details).
On the other hand, the optimal solution to (BBKK2) de-
noted by x2 uses only three servers located at any three facil-
ities (again, details are omitted). We note that models (RH)
and (MR) yield solutions that are identical to (BBKK2) in
this case.

Simulation results show the following node availabilities
for the two allocation vectors above:

A(x1) = (0.896, 0.912, 0.985, 0.985);
A(x2) = (0.854, 0.859, 0.859, 0.926).

Note that in both cases, the actual node availabilities are
much higher than the required α = 0.4. It is interesting to
note that with α = 0.5, both (BBKK1) and (BBKK2) have
x1 as an optimal solution. This example also shows that the

availability bounds used to derive both models are quite
conservative for some instances.

To investigate the separation between models (BBKK1)
and (BBKK2) further, and observing that the cycle example
has small differences in arrival rates and distances, we regen-
erated the 108 instances used in the computational experi-
ment above changing only the values of λ � Uniform(1, 2),
instead of the original range of (1, 10) and link length
l(i, j) � Uniform(1, 10), instead of the original range of
(1, 50). We found only three instances (out of 108) where
(BBKK2) outperforms (BBKK1) in terms of the number
of servers. To summarize, even though model (BBKK2)
can produce solutions with smaller number of servers than
(BBKK1) for some instances, our simulation results indi-
cate that (BBKK2) may not hold practical advantages over
(BBKK1) except in some special circumstances.

8. Conclusions

In this paper we addressed a location model with stochas-
tic demand, congestion and mobile servers. Service quality
is ensured through a server availability constraint impos-
ing the minimum probability that a new call from a given
demand node will find an available server.

The underlying queueing network operates as a PAQ
system, for which performance measures, such as server
availability, cannot be computed analytically. This leads
to the need for easily-computable lower bounds on the
availability—we derive two such bounds, which allows us to
develop two new location models (BBKK1) and (BBKK2),
which guarantee that the availability constraints are met.

We also examine in detail three previously developed
models for this problem—the (RH) (MR) and (BL) models.
We demonstrate that none of these models can guarantee
that the minimum availability constraints are met. Our sim-
ulation study shows that infeasibility is a frequent phenom-
ena in (RH) and (MR) models, with the level of infeasibility
quite severe in some instances.

It is interesting to note that in our experiments infea-
sibility occurs much more frequently in the (RH) than in
the (MR) model. This points to the importance of captur-
ing server interdependence in queueing systems (the (RH)
model’s estimate of availability is based on the binomial ap-
proximation which treats the busy periods for each server
as independent events, while (MR) uses queueing-based ap-
proximation). We note that the well-known (MAXECLP)
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model of Daskin (1983) employs the same binomial-based
approximation as the (RH) model.

The (BL) model achieves theoretical feasibility only when
there exists a deterministic upper bound T on service times.
Where such an upper bound does not exist (e.g., when ser-
vice times are exponential) or where the variability of service
times is large, T must be set to a certain percentile of the ser-
vice time distribution, which may lead to loss of feasibility.
Our results demonstrate the difficulty of picking the “right”
percentile. Setting T to the 50th and 75th percentiles we ob-
serve that the former tends to lead to infeasible solutions,
while the latter appears to be overly conservative, requiring
too many servers.

The (BBKK1) and (BBKK2) models developed in this
paper appear to strike a sensible balance—achieving fea-
sibility at a modest increase in the required server capac-
ity, at least compared to (BL(75%)). Of these two mod-
els, (BBKK1) appears to be more successful—it is easier
to solve, the solutions tend to require smaller number of
facilities and in the vast majority of instances generated
in our simulation experiments it used the same number of
servers as (BBKK2) (even though the latter can result in
better solutions).

The most obvious direction for future research is the need
to develop tighter estimates of node availability in partially-
accessible queues. The estimate underlying (BBKK1) is very
conservative. The tighter estimate underlying (BBKK2) ap-
pears not to provide significant advantages in practical
problems. We note that the “price” of feasibility—about
20–30% increase in the required number of servers over the
“infeasible” models—is not insignificant; better availability
estimates may be able to substantially reduce this cost.

Other directions include: relaxing some of the modeling
assumptions, as discussed in Section 6, and incorporating
multiple priority levels for calls (perhaps with different dis-
patching rules).
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